Papers
Topics
Authors
Recent
Search
2000 character limit reached

Accurate 3D frequency-domain seismic wave modeling with the wavelength-adaptive 27-point finite-difference stencil: a tool for full waveform inversion

Published 19 Aug 2021 in cs.CE and math.AP | (2108.08730v1)

Abstract: Efficient frequency-domain Full Waveform Inversion (FWI) of long-offset/wide-azimuth node data can be designed with a few discrete frequencies. However, 3D frequency-domain seismic modeling remains challenging since it requires solving a large and sparse linear indefinite system per frequency. When such systems are solved with direct methods or hybrid direct/iterative solvers, based upon domain decomposition preconditioner, finite-difference stencils on regular Cartesian grids should be designed to conciliate compactness and accuracy, the former being necessary to mitigate the fill-in induced by the Lower-Upper (LU) factorization. Compactness is classically implemented by combining several second-order accurate stencils covering the eight cells surrounding the collocation point, leading to the so-called 27-point stencil. Accuracy is obtained by applying optimal weights on the different stiffness and consistent mass matrices such that numerical dispersion is jointly minimized for several number of grid points per wavelength ($G$). However, with this approach, the same weights are used at each collocation point, leading to suboptimal accuracy in heterogeneous media. In this study, we propose a straightforward recipe to improve the accuracy of the 27-point stencil. First, we finely tabulate the values of $G$ covering the range of wavelengths spanned by the subsurface model and the frequency. Then, we estimate with a classical dispersion analysis in homogeneous media the corresponding table of optimal weights that minimize dispersion for each $G$ treated separately. We however apply a Tikhonov regularization to guarantee smooth variation of the weights with $G$. Finally, we build the impedance matrix by selecting the optimal weights at each collocation point according to the local wavelength, hence leading to a wavelength-adaptive stencil.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.