Papers
Topics
Authors
Recent
2000 character limit reached

Deep Contrastive Multiview Network Embedding

Published 16 Aug 2021 in cs.LG and cs.AI | (2108.08296v2)

Abstract: Multiview network embedding aims at projecting nodes in the network to low-dimensional vectors, while preserving their multiple relations and attribute information. Contrastive learning approaches have shown promising performance in this task. However, they neglect the semantic consistency between fused and view representations and have difficulty in modeling complementary information between different views. To deal with these deficiencies, this work presents a novel Contrastive leaRning framEwork for Multiview network Embedding (CREME). In our work, different views can be obtained based on the various relations among nodes. Then, we generate view embeddings via proper view encoders and utilize an attentive multiview aggregator to fuse these representations. Particularly, we design two collaborative contrastive objectives, view fusion InfoMax and inter-view InfoMin, to train the model in a self-supervised manner. The former objective distills information from embeddings generated from different views, while the latter captures complementary information among views to promote distinctive view embeddings. We also show that the two objectives can be unified into one objective for model training. Extensive experiments on three real-world datasets demonstrate that our proposed CREME is able to consistently outperform state-of-the-art methods.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.