Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Finite-data error bounds for Koopman-based prediction and control (2108.07102v2)

Published 16 Aug 2021 in math.OC, math.DS, math.PR, and physics.data-an

Abstract: The Koopman operator has become an essential tool for data-driven approximation of dynamical (control) systems, e.g., via extended dynamic mode decomposition. Despite its popularity, convergence results and, in particular, error bounds are still scarce. In this paper, we derive probabilistic bounds for the approximation error and the prediction error depending on the number of training data points; for both ordinary and stochastic differential equations while using either ergodic trajectories or i.i.d. samples. We illustrate these bounds by means of an example with the Ornstein-Uhlenbeck process. Moreover, we extend our analysis to (stochastic) nonlinear control-affine systems. We prove error estimates for a previously proposed approach that exploits the linearity of the Koopman generator to obtain a bilinear surrogate control system and, thus, circumvents the curse of dimensionality since the system is not autonomized by augmenting the state by the control inputs. To the best of our knowledge, this is the first finite-data error analysis in the stochastic and/or control setting. Finally, we demonstrate the effectiveness of the bilinear approach by comparing it with state-of-the-art techniques showing its superiority whenever state and control are coupled.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.