Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 416 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Finite groups with $\mathbb{P}$-subnormal and strongly permutable subgroups (2108.06993v1)

Published 16 Aug 2021 in math.GR

Abstract: Let $H$ be a subgroup of a group $G$. The permutizer $P_G(H)$ is the subgroup generated by all cyclic subgroups of $G$ which permute with $H$. A subgroup $H$ of a group $G$ is strongly permutable in $G$ if $P_U(H)=U$ for every subgroup $U$ of $G$ such that~$H\le U\le G$. We investigate groups with $\mathbb{P}$-subnormal or strongly permutable Sylow and primary cyclic subgroups. In particular, we prove that groups with all strongly permutable primary cyclic subgroups are supersoluble.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube