Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

On Azadkia-Chatterjee's conditional dependence coefficient (2108.06827v2)

Published 15 Aug 2021 in math.ST and stat.TH

Abstract: In recent work, Azadkia and Chatterjee (2021) laid out an ingenious approach to defining consistent measures of conditional dependence. Their fully nonparametric approach forms statistics based on ranks and nearest neighbor graphs. The appealing nonparametric consistency of the resulting conditional dependence measure and the associated empirical conditional dependence coefficient has quickly prompted follow-up work that seeks to study its statistical efficiency. In this paper, we take up the framework of conditional randomization tests (CRT) for conditional independence and conduct a power analysis that considers two types of local alternatives, namely, parametric quadratic mean differentiable alternatives and nonparametric H\"older smooth alternatives. Our local power analysis shows that conditional independence tests using the Azadkia--Chatterjee coefficient remain inefficient even when aided with the CRT framework, and serves as motivation to develop variants of the approach; cf. Lin and Han (2022b). As a byproduct, we resolve a conjecture of Azadkia and Chatterjee by proving central limit theorems for the considered conditional dependence coefficients, with explicit formulas for the asymptotic variances.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube