Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Generation Control Considering Uncertainties of the Key Parameters in the Frequency Response Model (2108.05672v1)

Published 12 Aug 2021 in eess.SY and cs.SY

Abstract: The highly fluctuated renewable generations and electric vehicles have undergone tremendous growth in recent years. The majority of them are connected to the grid via power electronic devices, resulting in wide variation ranges for several key parameters in the frequency response model (FRM) such as system inertia and load damping factor. In this paper, an automatic generation control (AGC) method considering the uncertainties of these key parameters is proposed. First, the historical power system operation data following large power disturbances are used to identify the FRM key parameters offline. Second, the offline identification results and the normal operation data prior to the occurrence of the disturbance are used to train the online probability estimation model of the FRM key parameters. Third, the online estimation results of the FRM key parameters are used as the input, and the model predictive-based AGC signal optimization method is developed based on distributionally robust optimization (DRO) technology. Case studies conducted on the IEEE 118-Bus System show that the proposed AGC method outperforms the widely utilized PI-based control method in terms of performance and efficiency.

Citations (12)

Summary

We haven't generated a summary for this paper yet.