Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Autonomous Mobility Using Real Demonstration Data (2108.04792v1)

Published 10 Aug 2021 in cs.RO

Abstract: This work proposed an efficient learning-based framework to learn feedback control policies from human teleoperated demonstrations, which achieved obstacle negotiation, staircase traversal, slipping control and parcel delivery for a tracked robot. Due to uncertainties in real-world scenarios, eg obstacle and slippage, closed-loop feedback control plays an important role in improving robustness and resilience, but the control laws are difficult to program manually for achieving autonomous behaviours. We formulated an architecture based on a long-short-term-memory (LSTM) neural network, which effectively learn reactive control policies from human demonstrations. Using datasets from a few real demonstrations, our algorithm can directly learn successful policies, including obstacle-negotiation, stair-climbing and delivery, fall recovery and corrective control of slippage. We proposed decomposition of complex robot actions to reduce the difficulty of learning the long-term dependencies. Furthermore, we proposed a method to efficiently handle non-optimal demos and to learn new skills, since collecting enough demonstration can be time-consuming and sometimes very difficult on a real robotic system.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jiacheng Gu (5 papers)
  2. Zhibin Li (98 papers)

Summary

We haven't generated a summary for this paper yet.