Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nonassociative black ellipsoids distorted by R-fluxes and four dimensional thin locally anisotropic accretion disks

Published 25 Jun 2021 in physics.gen-ph | (2108.04689v2)

Abstract: We construct nonassociative quasi-stationary solutions describing deformations of Schwarzschild black holes, BHs, to ellipsoid configurations, which can be black ellipsoids, BEs, and/or BHs with ellipsoidal accretion disks. Such solutions are defined by generic off-diagonal symmetric metrics and nonsymmetric components of metrics (which are zero on base four dimensional, 4-d, Lorentz manifold spacetimes but nontrivial in respective 8-d total (co) tangent bundles). Distorted nonassociative BH and BE solutions are found for effective real sources with terms proportional to $\hbar \kappa $ (for respective Planck and string constants). These sources and related effective nontrivial cosmological constants are determined by nonlinear symmetries and deformations of the Ricci tensor by nonholonomic star products encoding R-flux contributions from string theory. To generate various classes of (non) associative / commutative distorted solutions we generalize and apply the anholonomic frame and connection deformation method for constructing exact and parametric solutions in modified gravity and/or general relativity theories. We study properties of locally anisotropic relativistic, optically thick, could and thin accretion disks around nonassociative distorted BHs, or BEs, when the effects due to the rotation are negligible. Such configurations describe angular anisotropic deformations of axially symmetric astrophysical models when the nonassociative distortions are related to the outer parts of the accretion disks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.