Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Beam Tracking based on Recurrent Neural Networks for mmWave Channels (2108.04548v1)

Published 10 Aug 2021 in cs.IT and math.IT

Abstract: The performance of millimeter wave (mmWave) communications critically depends on the accuracy of beamforming both at base station (BS) and user terminals (UEs) due to high isotropic path-loss and channel attenuation. In high mobility environments, accurate beam alignment becomes even more challenging as the angles of the BS and each UE must be tracked reliably and continuously. In this work, focusing on the beamforming at the BS, we propose an adaptive method based on Recurrent Neural Networks (RNN) that tracks and predicts the Angle of Departure (AoD) of a given UE. Moreover, we propose a modified frame structure to reduce beam alignment overhead and hence increase the communication rate. Our numerical experiments in a highly non-linear mobility scenario show that our proposed method is able to track the AoD accurately and achieve higher communication rate compared to more traditional methods such as the particle filter.

Citations (11)

Summary

We haven't generated a summary for this paper yet.