Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Visual Design Principles in Art and Architecture through Deep Convolutional Neural Networks (2108.04048v1)

Published 9 Aug 2021 in cs.CV

Abstract: Visual design is associated with the use of some basic design elements and principles. Those are applied by the designers in the various disciplines for aesthetic purposes, relying on an intuitive and subjective process. Thus, numerical analysis of design visuals and disclosure of the aesthetic value embedded in them are considered as hard. However, it has become possible with emerging artificial intelligence technologies. This research aims at a neural network model, which recognizes and classifies the design principles over different domains. The domains include artwork produced since the late 20th century; professional photos; and facade pictures of contemporary buildings. The data collection and curation processes, including the production of computationally-based synthetic dataset, is genuine. The proposed model learns from the knowledge of myriads of original designs, by capturing the underlying shared patterns. It is expected to consolidate design processes by providing an aesthetic evaluation of the visual compositions with objectivity.

Citations (22)

Summary

We haven't generated a summary for this paper yet.