Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal Action Localization Using Gated Recurrent Units (2108.03375v2)

Published 7 Aug 2021 in cs.CV and cs.MM

Abstract: Temporal Action Localization (TAL) task which is to predict the start and end of each action in a video along with the class label of the action has numerous applications in the real world. But due to the complexity of this task, acceptable accuracy rates have not been achieved yet, whereas this is not the case regarding the action recognition task. In this paper, we propose a new network based on Gated Recurrent Unit (GRU) and two novel post-processing methods for TAL task. Specifically, we propose a new design for the output layer of the conventionally GRU resulting in the so-called GRU-Split network. Moreover, linear interpolation is used to generate the action proposals with precise start and end times. Finally, to rank the generated proposals appropriately, we use a Learn to Rank (LTR) approach. We evaluated the performance of the proposed method on Thumos14 and ActivityNet-1.3 datasets. Results show the superiority of the performance of the proposed method compared to state-of-the-art. Specifically in the mean Average Precision (mAP) metric at Intersection over Union (IoU) of 0.7 on Thumos14, we get 27.52% accuracy which is 5.12% better than that of state-of-the-art methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.