Papers
Topics
Authors
Recent
Search
2000 character limit reached

Efficient Representation for Electric Vehicle Charging Station Operations using Reinforcement Learning

Published 7 Aug 2021 in cs.LG and math.OC | (2108.03236v2)

Abstract: Effectively operating electrical vehicle charging station (EVCS) is crucial for enabling the rapid transition of electrified transportation. To solve this problem using reinforcement learning (RL), the dimension of state/action spaces scales with the number of EVs and is thus very large and time-varying. This dimensionality issue affects the efficiency and convergence properties of generic RL algorithms. We develop aggregation schemes that are based on the emergency of EV charging, namely the laxity value. A least-laxity first (LLF) rule is adopted to consider only the total charging power of the EVCS which ensures the feasibility of individual EV schedules. In addition, we propose an equivalent state aggregation that can guarantee to attain the same optimal policy. Based on the proposed representation, policy gradient method is used to find the best parameters for the linear Gaussian policy . Numerical results have validated the performance improvement of the proposed representation approaches in attaining higher rewards and more effective policies as compared to existing approximation based approach.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.