Papers
Topics
Authors
Recent
2000 character limit reached

Optimal consumption with loss aversion and reference to past spending maximum

Published 5 Aug 2021 in math.OC and q-fin.MF | (2108.02648v5)

Abstract: This paper studies an optimal consumption problem for a loss-averse agent with reference to past consumption maximum. To account for loss aversion on relative consumption, an S-shaped utility is adopted that measures the difference between the non-negative consumption rate and a fraction of the historical spending peak. We consider the concave envelope of the utility with respect to consumption, allowing us to focus on an auxiliary HJB variational inequality on the strength of concavification principle and dynamic programming arguments. By applying the dual transform and smooth-fit conditions, the auxiliary HJB variational inequality is solved in piecewise closed-form and some thresholds of the wealth variable are obtained. The optimal consumption and investment control can be derived in the piecewise feedback form. The rigorous verification proofs on optimality and concavification principle are provided. Some numerical sensitivity analysis and financial implications are also presented.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.