Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Beam Design for V2I Communications using Vehicle Tracking with Extended Kalman Filter

Published 5 Aug 2021 in cs.IT and math.IT | (2108.02584v2)

Abstract: Vehicle-to-everything communication system is a strong candidate for improving the driving experience and automotive safety by linking vehicles to wireless networks. To take advantage of the full benefits of vehicle connectivity, it is essential to ensure a stable network connection between roadside unit (RSU) and fast-moving vehicles. Based on the extended Kalman filter (EKF), we develop a vehicle tracking algorithm to enable reliable radio connections. For the vehicle tracking algorithm, we focus on estimating the rapid changes in the beam direction of a high-mobility vehicle while reducing the feedback overhead. Furthermore, we design a beamforming codebook that considers the road layout and RSU. By leveraging the proposed beamforming codebook, vehicles on the road can expect a service quality similar to that of conventional cellular services. Finally, a beamformer selection algorithm is developed to secure sufficient gain for the system's link budget. Numerical results verify that the EKF-based vehicle tracking algorithm and the proposed beamforming structure are more suitable for vehicle-to-infrastructure networks compared to existing schemes.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.