Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Streaming and Traffic Gathering in Mesh-based NoC for Deep Neural Network Acceleration (2108.02569v1)

Published 1 Aug 2021 in cs.LG, cs.AR, and cs.DC

Abstract: The increasing popularity of deep neural network (DNN) applications demands high computing power and efficient hardware accelerator architecture. DNN accelerators use a large number of processing elements (PEs) and on-chip memory for storing weights and other parameters. As the communication backbone of a DNN accelerator, networks-on-chip (NoC) play an important role in supporting various dataflow patterns and enabling processing with communication parallelism in a DNN accelerator. However, the widely used mesh-based NoC architectures inherently cannot support the efficient one-to-many and many-to-one traffic largely existing in DNN workloads. In this paper, we propose a modified mesh architecture with a one-way/two-way streaming bus to speedup one-to-many (multicast) traffic, and the use of gather packets to support many-to-one (gather) traffic. The analysis of the runtime latency of a convolutional layer shows that the two-way streaming architecture achieves better improvement than the one-way streaming architecture for an Output Stationary (OS) dataflow architecture. The simulation results demonstrate that the gather packets can help to reduce the runtime latency up to 1.8 times and network power consumption up to 1.7 times, compared with the repetitive unicast method on modified mesh architectures supporting two-way streaming.

Citations (2)

Summary

We haven't generated a summary for this paper yet.