Papers
Topics
Authors
Recent
2000 character limit reached

Regret Analysis of Learning-Based MPC with Partially-Unknown Cost Function

Published 4 Aug 2021 in math.OC and cs.LG | (2108.02307v2)

Abstract: The exploration/exploitation trade-off is an inherent challenge in data-driven adaptive control. Though this trade-off has been studied for multi-armed bandits (MAB's) and reinforcement learning for linear systems; it is less well-studied for learning-based control of nonlinear systems. A significant theoretical challenge in the nonlinear setting is that there is no explicit characterization of an optimal controller for a given set of cost and system parameters. We propose the use of a finite-horizon oracle controller with full knowledge of parameters as a reasonable surrogate to optimal controller. This allows us to develop policies in the context of learning-based MPC and MAB's and conduct a control-theoretic analysis using techniques from MPC- and optimization-theory to show these policies achieve low regret with respect to this finite-horizon oracle. Our simulations exhibit the low regret of our policy on a heating, ventilation, and air-conditioning model with partially-unknown cost function.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.