Papers
Topics
Authors
Recent
Search
2000 character limit reached

Signature Verification using Geometrical Features and Artificial Neural Network Classifier

Published 4 Aug 2021 in cs.CV and cs.AI | (2108.02029v1)

Abstract: Signature verification has been one of the major researched areas in the field of computer vision. Many financial and legal organizations use signature verification as access control and authentication. Signature images are not rich in texture; however, they have much vital geometrical information. Through this work, we have proposed a signature verification methodology that is simple yet effective. The technique presented in this paper harnesses the geometrical features of a signature image like center, isolated points, connected components, etc., and with the power of Artificial Neural Network (ANN) classifier, classifies the signature image based on their geometrical features. Publicly available dataset MCYT, BHSig260 (contains the image of two regional languages Bengali and Hindi) has been used in this paper to test the effectiveness of the proposed method. We have received a lower Equal Error Rate (EER) on MCYT 100 dataset and higher accuracy on the BHSig260 dataset.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.