Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Quantile Analysis for Realized GARCH Models (2108.01967v1)

Published 4 Aug 2021 in stat.ME

Abstract: This paper introduces a novel quantile approach to harness the high-frequency information and improve the daily conditional quantile estimation. Specifically, we model the conditional standard deviation as a realized GARCH model and employ conditional standard deviation, realized volatility, realized quantile, and absolute overnight return as innovations in the proposed dynamic quantile models. We devise a two-step estimation procedure to estimate the conditional quantile parameters. The first step applies a quasi-maximum likelihood estimation procedure, with the realized volatility as a proxy for the volatility proxy, to estimate the conditional standard deviation parameters. The second step utilizes a quantile regression estimation procedure with the estimated conditional standard deviation in the first step. Asymptotic theory is established for the proposed estimation methods, and a simulation study is conducted to check their finite-sample performance. Finally, we apply the proposed methodology to calculate the value at risk (VaR) of 20 individual assets and compare its performance with existing competitors.

Summary

We haven't generated a summary for this paper yet.