Papers
Topics
Authors
Recent
2000 character limit reached

Graph Attention Network For Microwave Imaging of Brain Anomaly

Published 4 Aug 2021 in cs.LG, eess.IV, and q-bio.NC | (2108.01965v1)

Abstract: So far, numerous learned models have been pressed to use in microwave imaging problems. These models however, are oblivious to the imaging geometry. It has always been hard to bake the physical setup of the imaging array into the structure of the network, resulting in a data-intensive models that are not practical. This work put forward a graph formulation of the microwave imaging array. The architectures proposed is made cognizant of the physical setup, allowing it to incorporate the symmetries, resulting in a less data requirements. Graph convolution and attention mechanism is deployed to handle the cases of fully-connected graphs corresponding to multi-static arrays. The graph-treatment of the problem is evaluated on experimental setup in context of brain anomaly localization with microwave imaging.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.