Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High Performance Across Two Atari Paddle Games Using the Same Perceptual Control Architecture Without Training (2108.01895v1)

Published 4 Aug 2021 in cs.LG and cs.HC

Abstract: Deep reinforcement learning (DRL) requires large samples and a long training time to operate optimally. Yet humans rarely require long periods training to perform well on novel tasks, such as computer games, once they are provided with an accurate program of instructions. We used perceptual control theory (PCT) to construct a simple closed-loop model which requires no training samples and training time within a video game study using the Arcade Learning Environment (ALE). The model was programmed to parse inputs from the environment into hierarchically organised perceptual signals, and it computed a dynamic error signal by subtracting the incoming signal for each perceptual variable from a reference signal to drive output signals to reduce this error. We tested the same model across two different Atari paddle games Breakout and Pong to achieve performance at least as high as DRL paradigms, and close to good human performance. Our study shows that perceptual control models, based on simple assumptions, can perform well without learning. We conclude by specifying a parsimonious role of learning that may be more similar to psychological functioning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tauseef Gulrez (2 papers)
  2. Warren Mansell (1 paper)

Summary

We haven't generated a summary for this paper yet.