Papers
Topics
Authors
Recent
2000 character limit reached

SwarmPlay: Interactive Tic-tac-toe Board Game with Swarm of Nano-UAVs driven by Reinforcement Learning

Published 3 Aug 2021 in cs.HC and cs.RO | (2108.01593v1)

Abstract: Reinforcement learning (RL) methods have been actively applied in the field of robotics, allowing the system itself to find a solution for a task otherwise requiring a complex decision-making algorithm. In this paper, we present a novel RL-based Tic-tac-toe scenario, i.e. SwarmPlay, where each playing component is presented by an individual drone that has its own mobility and swarm intelligence to win against a human player. Thus, the combination of challenging swarm strategy and human-drone collaboration aims to make the games with machines tangible and interactive. Although some research on AI for board games already exists, e.g., chess, the SwarmPlay technology has the potential to offer much more engagement and interaction with the user as it proposes a multi-agent swarm instead of a single interactive robot. We explore user's evaluation of RL-based swarm behavior in comparison with the game theory-based behavior. The preliminary user study revealed that participants were highly engaged in the game with drones (70% put a maximum score on the Likert scale) and found it less artificial compared to the regular computer-based systems (80%). The affection of the user's game perception from its outcome was analyzed and put under discussion. User study revealed that SwarmPlay has the potential to be implemented in a wider range of games, significantly improving human-drone interactivity.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.