Papers
Topics
Authors
Recent
2000 character limit reached

Observations of Existence and Instability Dynamics of Near-Zero-Dispersion Temporal Kerr Cavity Solitons

Published 3 Aug 2021 in physics.optics and nlin.PS | (2108.01322v1)

Abstract: Dissipative Kerr cavity solitons (CSs) are persisting pulses of light that manifest themselves in driven optical resonators and that have attracted significant attention over the last decade. Whilst the vast majority of studies have revolved around conditions where the resonator exhibits strong anomalous dispersion, recent studies have shown that solitons with unique characteristics and dynamics can arise under conditions of near-zero-dispersion driving. Here we report on experimental studies of the existence and stability dynamics of Kerr CSs under such conditions. In particular, we experimentally probe the solitons' range of existence and examine how their breathing instabilities are modified when group-velocity dispersion is close to zero, such that higher-order dispersion terms play a significant role. On the one hand, our experiments directly confirm earlier theoretical works that predict (i) breathing near-zero-dispersion solitons to emit polychromatic dispersive radiation, and (ii) that higher-order dispersion can extend the range over which the solitons are stable. On the other hand, our experiments also reveal a novel cross-over scenario, whereby the influence of higher-order dispersion changes from stabilising to destabilising. Our comprehensive experiments sample soliton dynamics both in the normal and anomalous dispersion regimes, and our results are in good agreement with numerical simulations and theoretical predictions.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.