Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Relighting and Expression Transfer On Video Portraits (2107.14735v4)

Published 30 Jul 2021 in cs.CV and cs.GR

Abstract: Photo-realistic video portrait reenactment benefits virtual production and numerous VR/AR experiences. The task remains challenging as the reenacted expression should match the source while the lighting should be adjustable to new environments. We present a neural relighting and expression transfer technique to transfer the facial expressions from a source performer to a portrait video of a target performer while enabling dynamic relighting. Our approach employs 4D reflectance field learning, model-based facial performance capture and target-aware neural rendering. Specifically, given a short sequence of the target performer's OLAT, we apply a rendering-to-video translation network to first synthesize the OLAT result of new sequences with unseen expressions. We then design a semantic-aware facial normalization scheme along with a multi-frame multi-task learning strategy to encode the content, segmentation, and motion flows for reliably inferring the reflectance field. This allows us to simultaneously control facial expression and apply virtual relighting. Extensive experiments demonstrate that our technique can robustly handle challenging expressions and lighting environments and produce results at a cinematographic quality.

Summary

We haven't generated a summary for this paper yet.