Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MDQE: A More Accurate Direct Pretraining for Machine Translation Quality Estimation (2107.14600v2)

Published 24 Jul 2021 in cs.CL

Abstract: It is expensive to evaluate the results of Machine Translation(MT), which usually requires manual translation as a reference. Machine Translation Quality Estimation (QE) is a task of predicting the quality of machine translations without relying on any reference. Recently, the emergence of predictor-estimator framework which trains the predictor as a feature extractor and estimator as a QE predictor, and pre-trained LLMs(PLM) have achieved promising QE performance. However, we argue that there are still gaps between the predictor and the estimator in both data quality and training objectives, which preclude QE models from benefiting from a large number of parallel corpora more directly. Based on previous related work that have alleviated gaps to some extent, we propose a novel framework that provides a more accurate direct pretraining for QE tasks. In this framework, a generator is trained to produce pseudo data that is closer to the real QE data, and a estimator is pretrained on these data with novel objectives that are the same as the QE task. Experiments on widely used benchmarks show that our proposed framework outperforms existing methods, without using any pretraining models such as BERT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Lei Lin (42 papers)