Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-stage Pre-training over Simplified Multimodal Pre-training Models

Published 22 Jul 2021 in cs.CL | (2107.14596v1)

Abstract: Multimodal pre-training models, such as LXMERT, have achieved excellent results in downstream tasks. However, current pre-trained models require large amounts of training data and have huge model sizes, which make them difficult to apply in low-resource situations. How to obtain similar or even better performance than a larger model under the premise of less pre-training data and smaller model size has become an important problem. In this paper, we propose a new Multi-stage Pre-training (MSP) method, which uses information at different granularities from word, phrase to sentence in both texts and images to pre-train the model in stages. We also design several different pre-training tasks suitable for the information granularity in different stage in order to efficiently capture the diverse knowledge from a limited corpus. We take a Simplified LXMERT (LXMERT- S), which has only 45.9% parameters of the original LXMERT model and 11.76% of the original pre-training data as the testbed of our MSP method. Experimental results show that our method achieves comparable performance to the original LXMERT model in all downstream tasks, and even outperforms the original model in Image-Text Retrieval task.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.