Papers
Topics
Authors
Recent
Search
2000 character limit reached

Enriching Local and Global Contexts for Temporal Action Localization

Published 27 Jul 2021 in cs.CV | (2107.12960v2)

Abstract: Effectively tackling the problem of temporal action localization (TAL) necessitates a visual representation that jointly pursues two confounding goals, i.e., fine-grained discrimination for temporal localization and sufficient visual invariance for action classification. We address this challenge by enriching both the local and global contexts in the popular two-stage temporal localization framework, where action proposals are first generated followed by action classification and temporal boundary regression. Our proposed model, dubbed ContextLoc, can be divided into three sub-networks: L-Net, G-Net and P-Net. L-Net enriches the local context via fine-grained modeling of snippet-level features, which is formulated as a query-and-retrieval process. G-Net enriches the global context via higher-level modeling of the video-level representation. In addition, we introduce a novel context adaptation module to adapt the global context to different proposals. P-Net further models the context-aware inter-proposal relations. We explore two existing models to be the P-Net in our experiments. The efficacy of our proposed method is validated by experimental results on the THUMOS14 (54.3\% at [email protected]) and ActivityNet v1.3 (56.01\% at [email protected]) datasets, which outperforms recent states of the art. Code is available at https://github.com/buxiangzhiren/ContextLoc.

Citations (102)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.