Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Communication and Computation Reduction for Split Learning using Asynchronous Training (2107.09786v1)

Published 20 Jul 2021 in cs.LG

Abstract: Split learning is a promising privacy-preserving distributed learning scheme that has low computation requirement at the edge device but has the disadvantage of high communication overhead between edge device and server. To reduce the communication overhead, this paper proposes a loss-based asynchronous training scheme that updates the client-side model less frequently and only sends/receives activations/gradients in selected epochs. To further reduce the communication overhead, the activations/gradients are quantized using 8-bit floating point prior to transmission. An added benefit of the proposed communication reduction method is that the computations at the client side are reduced due to reduction in the number of client model updates. Furthermore, the privacy of the proposed communication reduction based split learning method is almost the same as traditional split learning. Simulation results on VGG11, VGG13 and ResNet18 models on CIFAR-10 show that the communication cost is reduced by 1.64x-106.7x and the computations in the client are reduced by 2.86x-32.1x when the accuracy degradation is less than 0.5% for the single-client case. For 5 and 10-client cases, the communication cost reduction is 11.9x and 11.3x on VGG11 for 0.5% loss in accuracy.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.