Papers
Topics
Authors
Recent
Search
2000 character limit reached

Single-Shot Compression for Hypothesis Testing

Published 20 Jul 2021 in cs.IT and math.IT | (2107.09778v1)

Abstract: Enhanced processing power in the cloud allows constrained devices to offload costly computations: for instance, complex data analytics tasks can be computed by remote servers. Remote execution calls for a new compression paradigm that optimizes performance on the analytics task within a rate constraint, instead of the traditional rate-distortion framework which focuses on source reconstruction. This paper considers a simple binary hypothesis testing scenario where the resource constrained client (transmitter) performs fixed-length single-shot compression on data sampled from one of two distributions; the server (receiver) performs a hypothesis test on multiple received samples to determine the correct source distribution. To this end, the task-aware compression problem is formulated as finding the optimal source coder that maximizes the asymptotic error performance of the hypothesis test on the server side under a rate constraint. A new source coding strategy based on a greedy optimization procedure is proposed and it is shown that that the proposed compression scheme outperforms universal fixed-length single-shot coding scheme for a range of rate constraints.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.