Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Establishing process-structure linkages using Generative Adversarial Networks (2107.09402v1)

Published 20 Jul 2021 in cond-mat.mtrl-sci and cs.LG

Abstract: The microstructure of material strongly influences its mechanical properties and the microstructure itself is influenced by the processing conditions. Thus, establishing a Process-Structure-Property relationship is a crucial task in material design and is of interest in many engineering applications. We develop a GAN (Generative Adversarial Network) to synthesize microstructures based on given processing conditions. This approach is devoid of feature engineering, needs little domain awareness, and can be applied to a wide variety of material systems. Results show that our GAN model can produce high-fidelity multi-phase microstructures which have a good correlation with the given processing conditions.

Summary

We haven't generated a summary for this paper yet.