Papers
Topics
Authors
Recent
Search
2000 character limit reached

Consensus-Informed Optimization Over Mixtures for Ambiguity-Aware Object SLAM

Published 20 Jul 2021 in cs.RO | (2107.09265v2)

Abstract: Building object-level maps can facilitate robot-environment interactions (e.g. planning and manipulation), but objects could often have multiple probable poses when viewed from a single vantage point, due to symmetry, occlusion or perceptual failures. A robust object-level simultaneous localization and mapping (object SLAM) algorithm needs to be aware of this pose ambiguity. We propose to maintain and subsequently disambiguate the multiple pose interpretations to gradually recover a globally consistent world representation. The max-mixtures model is applied to implicitly and efficiently track all pose hypotheses, but the resulting formulation is non-convex, and therefore subject to local optima. To mitigate this problem, temporally consistent hypotheses are extracted, guiding the optimization into the global optimum. This consensus-informed inference method is applied online via landmark variable re-initialization within an incremental SLAM framework, iSAM2, for robust real-time performance. We demonstrate that this approach improves SLAM performance on both simulated and real object SLAM problems with pose ambiguity.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.