Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Markov Game Model for AI-based Cyber Security Attack Mitigation (2107.09258v1)

Published 20 Jul 2021 in cs.GT

Abstract: The new generation of cyber threats leverages advanced AI-aided methods, which make them capable to launch multi-stage, dynamic, and effective attacks. Current cyber-defense systems encounter various challenges to defend against such new and emerging threats. Modeling AI-aided threats through game theory models can help the defender to select optimal strategies against the attacks and make wise decisions to mitigate the attack's impact. This paper first explores the current state-of-the-art in the new generation of threats in which AI techniques such as deep neural network is used for the attacker and discusses further challenges. We propose a Markovian dynamic game that can evaluate the efficiency of defensive methods against the AI-aided attacker under a cloud-based system in which the attacker utilizes an AI technique to launch an advanced attack by finding the shortest attack path. We use the CVSS metrics to quantify the values of this zero-sum game model for decision-making.

Citations (1)

Summary

We haven't generated a summary for this paper yet.