Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constraints Penalized Q-learning for Safe Offline Reinforcement Learning (2107.09003v3)

Published 19 Jul 2021 in cs.LG and cs.AI

Abstract: We study the problem of safe offline reinforcement learning (RL), the goal is to learn a policy that maximizes long-term reward while satisfying safety constraints given only offline data, without further interaction with the environment. This problem is more appealing for real world RL applications, in which data collection is costly or dangerous. Enforcing constraint satisfaction is non-trivial, especially in offline settings, as there is a potential large discrepancy between the policy distribution and the data distribution, causing errors in estimating the value of safety constraints. We show that na\"ive approaches that combine techniques from safe RL and offline RL can only learn sub-optimal solutions. We thus develop a simple yet effective algorithm, Constraints Penalized Q-Learning (CPQ), to solve the problem. Our method admits the use of data generated by mixed behavior policies. We present a theoretical analysis and demonstrate empirically that our approach can learn robustly across a variety of benchmark control tasks, outperforming several baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Haoran Xu (77 papers)
  2. Xianyuan Zhan (47 papers)
  3. Xiangyu Zhu (85 papers)
Citations (71)

Summary

We haven't generated a summary for this paper yet.