Papers
Topics
Authors
Recent
2000 character limit reached

Neural Search: Learning Query and Product Representations in Fashion E-commerce

Published 17 Jul 2021 in cs.IR | (2107.08291v1)

Abstract: Typical e-commerce platforms contain millions of products in the catalog. Users visit these platforms and enter search queries to retrieve their desired products. Therefore, showing the relevant products at the top is essential for the success of e-commerce platforms. We approach this problem by learning low dimension representations for queries and product descriptions by leveraging user click-stream data as our main source of signal for product relevance. Starting from GRU-based architectures as our baseline model, we move towards a more advanced transformer-based architecture. This helps the model to learn contextual representations of queries and products to serve better search results and understand the user intent in an efficient manner. We perform experiments related to pre-training of the Transformer based RoBERTa model using a fashion corpus and fine-tuning it over the triplet loss. Our experiments on the product ranking task show that the RoBERTa model is able to give an improvement of 7.8% in Mean Reciprocal Rank(MRR), 15.8% in Mean Average Precision(MAP) and 8.8% in Normalized Discounted Cumulative Gain(NDCG), thus outperforming our GRU based baselines. For the product retrieval task, RoBERTa model is able to outperform other two models with an improvement of 164.7% in Precision@50 and 145.3% in Recall@50. In order to highlight the importance of pre-training RoBERTa for fashion domain, we qualitatively compare already pre-trained RoBERTa on standard datasets with our custom pre-trained RoBERTa over a fashion corpus for the query token prediction task. Finally, we also show a qualitative comparison between GRU and RoBERTa results for product retrieval task for some test queries.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.