Papers
Topics
Authors
Recent
2000 character limit reached

Ecohydrological land reanalysis

Published 15 Jul 2021 in physics.geo-ph | (2107.07646v1)

Abstract: The accurate estimation of terrestrial water and vegetation is a grand challenge in hydrometeorology. Many previous studies developed land data assimilation systems (LDASs) and provided global-scale land surface datasets by integrating numerical simulation and satellite data. However, vegetation dynamics has not been explicitly solved in these land reanalysis datasets. Here we present the newly developed land reanalysis dataset, ECoHydrological Land reAnalysis (ECHLA). ECHLA is generated by sequentially assimilating C- and X- band microwave brightness temperature satellite observations into a land surface model which can explicitly simulate the dynamic evolution of vegetation biomass. The ECHLA dataset provides semi-global soil moisture from surface to 1.95m depth, Leaf Area Index (LAI), and vegetation water content and is available from 2003 to 2010 and from 2013 to 2019. We assess the performance of ECHLA to estimate soil moisture and vegetation dynamics by comparing the ECHLA dataset with independent satellite and in-situ observation data. We found that our sequential update by data assimilation substantially improves the skill to reproduce the seasonal cycle of vegetation. Data assimilation also contributes to improving the skill to simulate soil moisture mainly in the shallow soil layers (0-0.15m depth). The ECHLA dataset will be publicly available and expected to contribute to understanding terrestrial ecohydrological cycles and water-related natural disasters such as drought.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.