Some inequalities on Finsler manifolds with weighted Ricci curvature bounded below (2107.07082v1)
Abstract: We establish some important inequalities under a lower weighted Ricci curvature bound on Finsler manifolds. Firstly, we establish a relative volume comparison of Bishop-Gromov type. As one of the applications, we obtain an upper bound for volumes of the Finsler manifolds. Further, when the S-curvature is bounded on the whole manifold, we obtain a theorem of Bonnet-Myers type on Finsler manifolds. Finally, we obtain a sharp Poincar\'{e}-Lichnerowicz inequality by using integrated Bochner inequality, from which we obtain a sharp lower bound for the first eigenvalue on the Finsler manifolds.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.