Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The Witt classes of $SO(2r)_{2r}$ (2107.06746v3)

Published 14 Jul 2021 in math.QA, math.CT, and math.NT

Abstract: We study the Witt classes of the modular categories $SO(2r)_{2r}$ associated with quantum groups of type $D_r$ at $4r-2$th roots of unity. From these classes we derive infinitely many Witt classes of order 2 that are linearly independent modulo the subgroup generated by the pointed modular categories. In particular we produce an example of a simple, completely anisotropic modular category that is not pointed whose Witt class has order 2, answering a question of Davydov, M\"uger, Nikshych and Ostrik. Our results show that the trivial Witt class $[Vec]$ has infinitely many square roots modulo the pointed classes, in analogy with the recent construction of infinitely many square roots of the Ising Witt classes modulo the pointed classes constructed in a similar way from certain type $B_r$ modular categories. We compare the subgroups generated by the Ising square roots and $[Vec]$ square roots and provide evidence that they also generate linearly independent subgroups.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.