Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Generalization with Pseudo-Domain Label for Face Anti-Spoofing (2107.06552v1)

Published 14 Jul 2021 in cs.CV and cs.AI

Abstract: Face anti-spoofing (FAS) plays an important role in protecting face recognition systems from face representation attacks. Many recent studies in FAS have approached this problem with domain generalization technique. Domain generalization aims to increase generalization performance to better detect various types of attacks and unseen attacks. However, previous studies in this area have defined each domain simply as an anti-spoofing datasets and focused on developing learning techniques. In this paper, we proposed a method that enables network to judge its domain by itself with the clustered convolutional feature statistics from intermediate layers of the network, without labeling domains as datasets. We obtained pseudo-domain labels by not only using the network extracting features, but also using depth estimators, which were previously used only as an auxiliary task in FAS. In our experiments, we trained with three datasets and evaluated the performance with the remaining one dataset to demonstrate the effectiveness of the proposed method by conducting a total of four sets of experiments.

Citations (5)

Summary

We haven't generated a summary for this paper yet.