Papers
Topics
Authors
Recent
2000 character limit reached

Real-Time Pothole Detection Using Deep Learning

Published 13 Jul 2021 in cs.CV and cs.LG | (2107.06356v1)

Abstract: Roads are connecting line between different places, and used daily. Roads' periodic maintenance keeps them safe and functional. Detecting and reporting the existence of potholes to responsible departments can help in eliminating them. This study deployed and tested on different deep learning architecture to detect potholes. The images used for training were collected by cellphone mounted on the windshield of the car, in addition to many images downloaded from the internet to increase the size and variability of the database. Second, various object detection algorithms are employed and compared to detect potholes in real-time like SDD-TensorFlow, YOLOv3Darknet53 and YOLOv4Darknet53. YOLOv4 achieved the best performance with 81% recall, 85% precision and 85.39% mean Average Precision (mAP). The speed of processing was 20 frame per second. The system was able to detect potholes from a range on 100 meters away from the camera. The system can increase the safety of drivers and improve the performance of self-driving cars by detecting pothole time ahead.

Citations (38)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.