Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Automatic Instrumentation by Learning to Separate Parts in Symbolic Multitrack Music (2107.05916v2)

Published 13 Jul 2021 in cs.SD, cs.AI, cs.LG, and eess.AS

Abstract: Modern keyboards allow a musician to play multiple instruments at the same time by assigning zones -- fixed pitch ranges of the keyboard -- to different instruments. In this paper, we aim to further extend this idea and examine the feasibility of automatic instrumentation -- dynamically assigning instruments to notes in solo music during performance. In addition to the online, real-time-capable setting for performative use cases, automatic instrumentation can also find applications in assistive composing tools in an offline setting. Due to the lack of paired data of original solo music and their full arrangements, we approach automatic instrumentation by learning to separate parts (e.g., voices, instruments and tracks) from their mixture in symbolic multitrack music, assuming that the mixture is to be played on a keyboard. We frame the task of part separation as a sequential multi-class classification problem and adopt machine learning to map sequences of notes into sequences of part labels. To examine the effectiveness of our proposed models, we conduct a comprehensive empirical evaluation over four diverse datasets of different genres and ensembles -- Bach chorales, string quartets, game music and pop music. Our experiments show that the proposed models outperform various baselines. We also demonstrate the potential for our proposed models to produce alternative convincing instrumentations for an existing arrangement by separating its mixture into parts. All source code and audio samples can be found at https://salu133445.github.io/arranger/ .

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com