Papers
Topics
Authors
Recent
Search
2000 character limit reached

Machine learning enabled fast evaluation of dynamic aperture for storage ring accelerators

Published 5 Jul 2021 in physics.comp-ph and physics.acc-ph | (2107.05623v2)

Abstract: For any storage ring-based large-scale scientific facility, one of the most important performance parameters is the dynamic aperture (DA), which measures the motion stability of charged particles in a global manner. To date, long-term tracking-based simulation is regarded as the most reliable method to calculate DA. However, numerical tracking may become a significant issue, especially when lots of candidate designs of a storage ring need to be evaluated. In this paper, we present a novel machine learning-based method, which can reduce the computation cost of DA tracking by approximately one order of magnitude, while keeping sufficiently high evaluation accuracy. Moreover, we demonstrate that this method is independent of concrete physical models of a storage ring. This method has the potential to be applied to similar problems of identifying irregular motions in other complex dynamical systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.