Papers
Topics
Authors
Recent
2000 character limit reached

Separating LREC from LFP

Published 12 Jul 2021 in cs.LO and cs.CC | (2107.05296v1)

Abstract: LREC= is an extension of first-order logic with a logarithmic recursion operator. It was introduced by Grohe et al. and shown to capture the complexity class L over trees and interval graphs. It does not capture L in general as it is contained in FPC - fixed-point logic with counting. We show that this containment is strict. In particular, we show that the path systems problem, a classic P-complete problem which is definable in LFP - fixed-point logic - is not definable in LREC= This shows that the logarithmic recursion mechanism is provably weaker than general least fixed points. The proof is based on a novel Spoiler-Duplicator game tailored for this logic.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.