Papers
Topics
Authors
Recent
2000 character limit reached

Algebra and coalgebra of stream products

Published 9 Jul 2021 in cs.FL | (2107.04455v1)

Abstract: We study connections among polynomials, differential equations and streams over a field K, in terms of algebra and coalgebra. We first introduce the class of (F,G)-products on streams, those where the stream derivative of a product can be expressed as a polynomial of the streams themselves and their derivatives. Our first result is that, for every (F,G)-product, there is a canonical way to construct a transition function on polynomials such that the induced unique final coalgebra morphism from polynomials into streams is the (unique) K-algebra homomorphism -- and vice versa. This implies one can reason algebraically on streams, via their polynomial representation. We apply this result to obtain an algebraic-geometric decision algorithm for polynomial stream equivalence, for an underlying generic (F,G)-product. As an example of reasoning on streams, we focus on specific products (convolution, shuffle, Hadamard) and show how to obtain closed forms of algebraic generating functions of combinatorial sequences, as well as solutions of nonlinear ordinary differential equations.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.