Policy Gradient Methods for Distortion Risk Measures
Abstract: We propose policy gradient algorithms which learn risk-sensitive policies in a reinforcement learning (RL) framework. Our proposed algorithms maximize the distortion risk measure (DRM) of the cumulative reward in an episodic Markov decision process in on-policy and off-policy RL settings, respectively. We derive a variant of the policy gradient theorem that caters to the DRM objective, and integrate it with a likelihood ratio-based gradient estimation scheme. We derive non-asymptotic bounds that establish the convergence of our proposed algorithms to an approximate stationary point of the DRM objective.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.