Papers
Topics
Authors
Recent
Search
2000 character limit reached

Higher dimensional analogon of Borcea-Voisin Calabi-Yau manifolds, their Hodge numbers and $L$-functions

Published 8 Jul 2021 in math.AG | (2107.04104v3)

Abstract: We construct a series of examples of Calabi-Yau manifolds in an arbitrary dimension and compute the main invariants. In particular, we give higher dimensional generalization of Borcea-Voisin Calabi-Yau threefolds. We give a method to compute a local zeta function using the Frobenius morphism for orbifold cohomology introduced by Rose. We compute Hodge numbers of the constructed examples using orbifold Chen-Ruan cohomology.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.