2000 character limit reached
Quantum projective planes as certain graded twisted tensor products (2107.03612v1)
Published 8 Jul 2021 in math.RA and math.QA
Abstract: Let $\mathbb{k}$ be an algebraically closed field. Building upon previous work, we classify, up to isomorphism of graded algebras, quadratic graded twisted tensor products of $\mathbb{k}[x,y]$ and $\mathbb{k}[z]$. When such an algebra is Artin-Schelter regular, we identify its point scheme and type. We also describe which three-dimensional Sklyanin algebras contain a subalgebra isomorphic to a quantum $\mathbb{P}1$, and we show that every algebra in this family is a graded twisted tensor product of $\mathbb{k}_{-1}[x,y]$ and $\mathbb{k}[z]$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.