Papers
Topics
Authors
Recent
Search
2000 character limit reached

Causal Inference with Corrupted Data: Measurement Error, Missing Values, Discretization, and Differential Privacy

Published 6 Jul 2021 in econ.EM, cs.LG, math.ST, stat.ML, and stat.TH | (2107.02780v6)

Abstract: The US Census Bureau will deliberately corrupt data sets derived from the 2020 US Census, enhancing the privacy of respondents while potentially reducing the precision of economic analysis. To investigate whether this trade-off is inevitable, we formulate a semiparametric model of causal inference with high dimensional corrupted data. We propose a procedure for data cleaning, estimation, and inference with data cleaning-adjusted confidence intervals. We prove consistency and Gaussian approximation by finite sample arguments, with a rate of $n{ 1/2}$ for semiparametric estimands that degrades gracefully for nonparametric estimands. Our key assumption is that the true covariates are approximately low rank, which we interpret as approximate repeated measurements and empirically validate. Our analysis provides nonasymptotic theoretical contributions to matrix completion, statistical learning, and semiparametric statistics. Calibrated simulations verify the coverage of our data cleaning adjusted confidence intervals and demonstrate the relevance of our results for Census-derived data.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 8 likes about this paper.