Papers
Topics
Authors
Recent
2000 character limit reached

Making Three Out of Two: Three-Way Online Correlated Selection

Published 6 Jul 2021 in cs.DS | (2107.02605v1)

Abstract: Two-way online correlated selection (two-way OCS) is an online algorithm that, at each timestep, takes a pair of elements from the ground set and irrevocably chooses one of the two elements, while ensuring negative correlation in the algorithm's choices. Whilst OCS was initially invented by Fahrbach, Huang, Tao, and Zadimoghaddam to solve the edge-weighted online bipartite matching problem, it is an interesting technique on its own due to its capability of introducing a powerful algorithmic tool, namely negative correlation, to online algorithms. As such, Fahrbach et al. posed two tantalizing open questions in their paper, one of which was the following: Can we obtain n-way OCS for n>2, in which the algorithm can be given n>2 elements to choose from at each timestep? In this paper, we affirmatively answer this open question by presenting a three-way OCS. Our algorithm uses two-way OCS as its building block and is simple to describe; however, as it internally runs two instances of two-way OCS, one of which is fed with the output of the other, the final output probability distribution becomes highly elusive. We tackle this difficulty by approximating the output distribution of OCS by a flat, less correlated function and using it as a safe "surrogate" of the real distribution. Our three-way OCS also yields a 0.5093-competitive algorithm for edge-weighted online matching, demonstrating its usefulness.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.