Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Survey on Deep Learning Event Extraction: Approaches and Applications

Published 5 Jul 2021 in cs.CL | (2107.02126v6)

Abstract: Event extraction (EE) is a crucial research task for promptly apprehending event information from massive textual data. With the rapid development of deep learning, EE based on deep learning technology has become a research hotspot. Numerous methods, datasets, and evaluation metrics have been proposed in the literature, raising the need for a comprehensive and updated survey. This article fills the research gap by reviewing the state-of-the-art approaches, especially focusing on the general domain EE based on deep learning models. We introduce a new literature classification of current general domain EE research according to the task definition. Afterward, we summarize the paradigm and models of EE approaches, and then discuss each of them in detail. As an important aspect, we summarize the benchmarks that support tests of predictions and evaluation metrics. A comprehensive comparison among different approaches is also provided in this survey. Finally, we conclude by summarizing future research directions facing the research area.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.