A convex optimization approach to online set-membership EIV identification of LTV systems (2107.01714v1)
Abstract: This paper addresses the problem of recursive set-membership identification for linear time varying (LTV) systems when both input and output measurements are affected by bounded additive noise. First we formulate the problem of online computation of the parameter uncertainty intervals (PUIs) in terms of nonconvex polynomial optimization. Then, we propose a convex relaxation approach based on McCormick envelopes to solve the formulated problem to the global optimum by means of linear programming. The effectiveness of the proposed identification scheme is demonstrated by means of two simulation examples.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.