Papers
Topics
Authors
Recent
Search
2000 character limit reached

Examining average and discounted reward optimality criteria in reinforcement learning

Published 3 Jul 2021 in cs.LG, cs.AI, cs.RO, cs.SY, and eess.SY | (2107.01348v2)

Abstract: In reinforcement learning (RL), the goal is to obtain an optimal policy, for which the optimality criterion is fundamentally important. Two major optimality criteria are average and discounted rewards. While the latter is more popular, it is problematic to apply in environments without an inherent notion of discounting. This motivates us to revisit a) the progression of optimality criteria in dynamic programming, b) justification for and complication of an artificial discount factor, and c) benefits of directly maximizing the average reward criterion, which is discounting-free. Our contributions include a thorough examination of the relationship between average and discounted rewards, as well as a discussion of their pros and cons in RL. We emphasize that average-reward RL methods possess the ingredient and mechanism for applying a family of discounting-free optimality criteria (Veinott, 1969) to RL.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 5 likes about this paper.